

SANDIA REPORT
SAND2015-8067
Unlimited Release
Printed September, 2015

Classifier-Guided Sampling for Complex
Energy System Optimization

Peter B. Backlund, John P. Eddy

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

Classifier-Guided Sampling for Complex Energy
System Optimization

Peter B. Backlund and John P. Eddy

System Readiness and Sustainment Technologies

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-MS1188

Abstract

This report documents the results of a Laboratory Directed Research and

Development (LDRD) effort entitled “Classifier-Guided Sampling for Complex

Energy System Optimization” that was conducted during FY 2014 and FY 2015. The

goal of this project was to develop, implement, and test major improvements to the

classifier-guided sampling (CGS) algorithm. CGS is type of evolutionary algorithm

for performing search and optimization over a set of discrete design variables in the

face of one or more objective functions. Existing evolutionary algorithms, such as

genetic algorithms, may require a large number of objective function evaluations to

identify optimal or near-optimal solutions. Reducing the number of evaluations can

result in significant time savings, especially if the objective function is

computationally expensive. CGS reduces the evaluation count by using a Bayesian

network classifier to filter out non-promising candidate designs, prior to evaluation,

based on their posterior probabilities. In this project, both the single-objective and

multi-objective versions of the CGS are developed and tested on a set of benchmark

problems. As a domain-specific case study, CGS is used to design a microgrid for

use in islanded mode during an extended bulk power grid outage.

4

ACKNOWLEDGMENTS

The Classifier-Guided Sampling (CGS) LDRD team would like to thank Bruce Thompson for

his time and support as Program Manager of this effort. The team also would like to thank

Stephen Henry, Frank Muldoon, and Steve Verzi for their time and input during the CGS peer-

review and idea brainstorming sessions. The time and feedback from Laura Swiler are also

greatly appreciated. The team thanks Jason Stamp, Michael Baca, Ross Guttromson, Jordan

Henry, Richard Jensen, Karina Muñoz-Ramos, Ben Schenkman, and Mark A. Smith for their

contributions to the City of Hoboken Energy Surety Analysis effort. Lastly, Carolyn Seepersad

of the University of Texas at Austin and David Shahan of HRL Laboratories are acknowledged

for their contributions to the early development of CGS.

5

CONTENTS

1 Introduction ... 7
1.1 Problem Background .. 7
1.2 Goals and Objectives of the Project .. 7

2 Classifier-Guided Sampling .. 9

2.1 Related Work .. 9
2.2 Bayesian Classifiers .. 10
2.3 Using a Bayesian Classifier to Perform Black-Box Optimization................................ 12

2.3.1 Main Loop of the Algorithm ... 12
2.3.2 Assigning Class Labels ... 14

2.3.3 Learning the Bayesian Network Structure .. 14

2.4 Multi-Objective Classifier-Guided Sampling ... 16

3 Comparison to Genetic Algorithms .. 19
3.1 Test Problems.. 19

3.1.1 30-Variable Deceptive Function of Order 3 ... 19
3.1.2 50-Item 0-1 Knapsack Problem .. 19

3.1.3 System Design Problem .. 20
3.1.4 30-City Traveling Salesman Problem ... 20
3.1.5 Warehouse Location Problem ... 21

3.1.6 Welded Beam Design Problem ... 21
3.2 Single-Objective Performance Comparison Results ... 22

3.2.1 30-Variable Deceptive Function of Order 3 ... 23
3.2.2 50-Item 0-1 Knapsack Problem .. 23

3.2.3 System Design Problem .. 24
3.2.4 30-City Traveling Salesman Problem ... 24

3.2.5 Warehouse Location Problem ... 24
3.2.6 Welded Beam Design Problem ... 24
3.2.7 Single-Objective Optimization Results Discussion .. 27

3.3 Multi-Objective Performance Comparison Results .. 28

3.3.1 2D 50-Item Knapsack Problem ... 29
3.3.2 Multi-Objective Results Discussion ... 29

4 Application to Microgrid Design .. 33
4.1 Performance and Reliability Model Overview ... 33
4.2 Hoboken Microgrid Design Challenge ... 34

4.3 Single-Objective Results ... 36

4.4 Multi-Objective Results .. 37

5 Conclusions and Future work ... 39

6 References ... 41

Appendix A: Test Problem Parameters .. 43

6

FIGURES

Figure 1: Bayesian network for the naïve Bayes classifier ... 11
Figure 2: Bayesian network for a classifier with non-independent design variables 11
Figure 3: Classifier-guided sampling algorithm ... 13
Figure 4: Domination raking for a two-objective minimization problem [17] 17

Figure 5: NSGA-II non-dominated crowding sorting procedure applied to MOCGS.................. 17
Figure 6: Welded beam problem [22] ... 21
Figure 7: Manual BN used for the CGS solution of the order 3 deceptive 23
Figure 8: Deceptive function results ... 25
Figure 9: 50-Item knapsack results ... 25

Figure 10: System design problem results .. 26
Figure 11: 30-city traveling salesman problem results ... 26

Figure 12: Warehouse location problem results ... 27
Figure 13: Welded beam problem results ... 27

Figure 14: Multi-objective 50-Item knapsack problem Pareto progression 31
Figure 15: Critical Hoboken buildings shown on a flood map [27] ... 35

Figure 16: Single-objective rate of convergence results ... 36
Figure 17: Multi-objective microgrid design problem Pareto progression 38

TABLES

Table 1. Description of symbols in the K2 node score equation .. 15
Table 2. Welded beam design problem geometric parameters ... 22

Table 3. User-defined parameters for the deceptive function of order 3 23

Table 4. User-defined parameters for the 50-item 0-1 knapsack problem 24
Table 5. User-defined parameters for the system design problem .. 24
Table 6. User-defined parameters for the 30-city TSP ... 24

Table 7. User-defined parameters for the warehouse location problem 24
Table 8. User-defined parameters for the welded beam design problem 25
Table 9. User-defined parameters for the multi-objective 50-item knapsack problem 29

7

1 INTRODUCTION

1.1 Problem Background

The difficult task of designing a complex engineering system is significantly aided with the use

of computer models and optimization software. For example, in a modern energy distribution

system, integration of traditional fossil and renewable sources, unpredictable loads, and the

inclusion of energy storage elements are only a few of the design decisions that could be

informed with the use of modeling and optimization applications. High-fidelity computer

models of such systems are invaluable resources for understanding and evaluating system

behavior. However, computational expense limits their usefulness for optimization and decision

space exploration because metaheuristic optimization methods may require numerous

evaluations of the expensive model to identify promising solutions.

Reducing the time required to solve complex optimization problems is a valuable endeavor. If a

single optimization run requires multiple days to complete, a significant reduction in the solution

time will enhance our ability to support stakeholders. This is especially true in light of the fact

that several analyses are often required; model or data errors may be discovered on initial trials,

or additional runs may be requested upon stakeholder review of initial results. Reducing the

amount of time required to perform an optimization run will enable more runs to be performed,

and may mean the difference between addressing a specific question or not, given a hard

deadline such as a final out brief to leadership or an annual budgeting cycle.

1.2 Goals and Objectives of the Project

The goal of this project is to improve a relatively new optimization technique known as

Classifier-Guided Sampling (CGS) and to develop a novel optimization method that is capable of

solving large, computationally expensive, discrete variable, single- and multi-objective

optimization problems. CGS reduces objective function evaluations by using an inexpensive

Bayesian network (BN) classifier to leverage knowledge gained from all prior evaluations and to

predict the qualitative performance of candidate solutions. Using a classifier in this way helps

the search process focus on high-performance designs and to avoid wasteful evaluations of poor-

performing ones.

Prior to the start of this project, CGS was a new technology with significant shortcomings that

rendered it incapable of handling large-scale, multi-objective optimization problems. First, in its

initial form [1], CGS was only suitable for small design spaces because it required enumeration

and processing of every solution in the discrete design space at each iteration. This approach is

impractical for moderate to large design spaces due to the combinatorial explosion that is

associated with an increase in the number of design variables. To address this issue, the

probability distributions on which the BN classifier is based are sampled directly to guide the

search towards the most promising designs in the solution space. Initial steps to address this

issue were taken in [2], and this LDRD continues this work by implementing a more scalable and

flexible computer implementation of this approach. Second, accounting for interactions between

variables is critical to the performance of the CGS algorithm. Prior to this work, these

dependencies had to be programmed into the algorithm manually. While doing so is feasible for

small problems that are well-understood, identifying and assigning these dependencies when

8

dealing with large problems with hundreds of variables is a nearly impossible task. This issue

has been addressed by incorporating an algorithm that automatically builds the BN based on a set

of training data. Lastly, multi-objective capability has not previously been developed for the

CGS method. This capability is realized by utilizing the classifier outputs to sample only the

candidate solutions that are believed to be Pareto optimal. The goal of this research has been to

address the three aforementioned shortcomings of CGS. In its new form, CGS has the ability to

solve large-scale, computationally expensive, multi-objective optimization problems.

The improved version of CGS is tested on a set of single- and multi-objective test problems. The

rate at which the algorithm converges towards optimal designs is recorded, and the performance

is compared to a standard genetic algorithm. As a domain-specific case study, CGS is used to

design a microgrid for use in islanded mode during an extended bulk power grid outage. The

microgrid design problem has a single- and multi-objective problem formulation. In the single-

objective case, the average load not served (LNS) during the outage is minimized, subject to a

constraint on installation cost. In the multi-objective case, a set of Pareto optimal designs is

sought that efficiently trade minimization of installation cost and LNS.

9

2 CLASSIFIER-GUIDED SAMPLING

CGS is a randomized optimization technique suitable for discrete variable problems. CGS

achieves efficient global optimization by using a Bayesian classifier to provide categorical

predictions of the performance of candidate solutions prior to expensive evaluation. In the

following section, an overview of related optimization technologies is provided and the

differentiating characteristics of CGS are highlighted. In Section 2.2, the mathematical details of

a Bayesian network classifier are given. Finally, in Sections 2.3 and 2.4, the CGS algorithm and

its multi-objective extension, respectively, are explained.

2.1 Related Work

Over the past several decades, significant research effort has been dedicated to the study and

development of evolutionary algorithms (EAs). The term EA describes a broad category of

population-based optimization techniques that are loosely inspired by natural evolutionary

processes in which a population of individuals evolves according to a randomized natural

selection process. EAs make no assumptions about the objective functions they seek to optimize.

Therefore, they are well-suited for black-box optimization problems where only the inputs and

outputs of the objective functions are known, gradient information is unavailable, and linearity or

convexity cannot be assumed.

The most well-known type of EA is the genetic algorithm (GA). GAs explore the design space

by selecting and combining solutions from the current population [3]. Ideally, combinations of

high-performing schemata, or partial solutions, are created and combined to form ever-

improving designs with each iteration. These high-quality partial solutions are known as

building blocks [4]. When building blocks are of a high order, or if they span a significant length

of the encoded solution, the GA crossover and mutation operators are likely to inadvertently

disrupt them, a common phenomenon known as the linkage problem [5]. One approach to

addressing this issue is to develop a probabilistic model using the population of best known

designs, and subsequently use this model to generate new designs. The general approach of

replacing traditional GA recombination operators with a probabilistic model is the defining

characteristic of a class of EAs known as estimation of distribution algorithms (EDAs) [6].

Several EDAs have been published since the mid-1990s. For example, the population-based

incremental learning algorithm (PBIL) [7] and compact genetic algorithm (cGA) [8] use a

probability vector to generate new solutions. However, both assume that there are no

interactions between variables. The mutual information maximizing input clustering (MIMIC)

[9] algorithm uses a 2
nd

 order density estimation, and is therefore capable of capturing pairwise

variable interactions. Other EDAs model the factorization of distributions with a Bayesian

network, the structure of which is learned and updated incrementally throughout the optimization

process. Perhaps the best known algorithm of this type is the Bayesian optimization algorithm

(BOA) [10]. EDAs like BOA are able to capture variable interaction of arbitrary order without

the need for expert knowledge of the underlying optimization problem; a practitioner using BOA

need only specify an upper limit on the order of the interactions amongst design variables.

10

CGS builds on the work of previous EDAs by using a Bayesian classifier to perform two

important tasks in the optimization. First, similar to other EDAs, the probability distributions

that comprise the classifier are sampled directly to generate new designs for exploration. Like

the BOA, the distributions are factored according to a Bayesian network, the structure of which

is learned based on a population of promising designs. Second, CGS uses a classifier to predict

the performance of each candidate design, prior to objective function evaluation. The second

task described above is what makes CGS different from all other existing EDAs. CGS is

therefore able to take advantage of the properties of the most advanced EDAs, while also

leveraging information gained from all previous evaluations in a machine learning fashion to

filter out designs that have a low likelihood of being a high-performance design after evaluation

of the objective function.

2.2 Bayesian Classifiers

Classification is a machine learning problem in which the goal is to predict the categorical class

label of a specific instance of a set of attributes. Prior to classification, a classifier must be

trained using a set of known feature vector / class label pairs. In the context of CGS, the feature

vectors are specific design instances, and the class labels are assigned according to their known

objective function values (e.g. ‘good’/’bad’).

A Bayesian classifier uses a factorization of probability distributions to predict the categorical

performance of a candidate configuration based on all previously evaluated points. Let K be the

number of classes, and let ck represent the class k for 1,2,...,k K . The classification is

performed in a D-dimensional design space, and x = [x1, x2,…, xD] is a vector of design variables.

If x̂ is a specific design instance of x, Bayes’ formula is used to estimate the probability that x̂ is

a member of the class ck, (i.e., the probability of ck given x̂) according to:

1

ˆ ˆ| |
ˆ|

ˆ ˆ |

k k k k

k K

k kk

P c P c P c P c
P c

P P c P c

x x
x

x x

(1)

where P(x|ck) is the conditional probability of a design instance given the class label, and P(ck) is

the prior probability of any randomly selected point belonging to class ck. The LHS of Eq. (1) is

called the posterior probability, and design x̂ is classified as a member of the class ck that has the

highest posterior when compared to all other classes.

CGS sets the prior probabilities, P(ck), according to a constant discrete uniform distribution:

1

kP c
K

 , 1,2,...,k K (2)

where K is the number of performance categories.

P(x|c) is a D-dimensional joint distribution that is estimated from a training set of design vector /

class label pairs. It is generally impractical to model the full joint distribution. Whenever

possible, it is advantageous to make conditional independence assumptions about the design

variables and refactor P(x|c) into a product of univariate distributions. While no variable can be

11

independent of the class variable c, variables may or may not be independent of each other. In

its simplest form, CGS assumes that all design variables are independent, and P(x|c) reduces to:

 1 2| | | ... |DP c P x c P x c P x cx (3)

Using the factorization in Eq. (3) is a special case of Bayesian classifier known as the naïve

Bayes classifier [11]. A particular factorization of P(x|c) can be graphically represented using a

BN, which is a directed acyclic graph. For example, the BN representation of the factorization in

Eq. (3) is shown in Figure 1.

Figure 1: Bayesian network for the naïve Bayes classifier

Figure 2: Bayesian network for a classifier with non-independent design variables

Dependencies between variables can be represented by including directed edges between

variable nodes in the BN. For example, the BN depicted in Figure 2 is a graphical representation

of the joint probability factorization in Eq. (4).

 1 2 1 3 2| | | , | ,P c P x c P x c x P x c xx (4)

CGS is currently only for use with discrete variables, and therefore uses D discrete probability

distributions to estimate P(x|c). The task of estimating the distribution parameters is achieved by

assigning class labels to all design points that have been evaluated with the expensive simulation,

and then counting the number of instances of each possible combination of that variable and its

parent variables in the BN (including the class variable).

For example, assume design variables x1 and x2 both have domain {0, 1} and x2 has parent nodes

x1 and c in the BN. We need to estimate P(x2 | c = ‘good’, x1 = 1), where ‘good’ is a categorical

class label to indicate that a design is promising. This distribution is modeled with a probability

mass function with two parameters: x2=0,c=good,x1=1 and x2=1,c=good, x1=1. The distribution

parameter x2=0,c=good,x1=1 is estimated according to:

 2 1

2 1

0, , 1

1 1

0, , 1

1, , 1 # 0, , 1
x c good x

x c good x

x c good x x c good x

(5)

12

where #(x2 = 0, c = ‘good’, x1 = 1) and #(x = 1, c = ‘good’, x1 = 1) are the number of instances of

(x2 = 0, c = ‘good’, x1 = 1) and (x2 = 1, c = ‘good’, x1 = 1) in the training set, respectively. The

parameters and represent initial counts and can be used to initialize the class conditional

probability distributions when prior knowledge of the distribution probabilities is available. The

distribution parameter x2=1,c=good,x1=1 is estimated similarly.

The process is generalized to variables with larger domain sizes as follows. If the discrete design

variable xi has cardinality (domain size) C, then j

ix is the j
th

 level in the domain of xi,

where 1,2,...,j C . Furthermore, if the initial counts are represented by the vector = [1,

2,…, C], then the discrete distribution parameters for j

ix given a specific instantiation of its

parent variables p̂ is given by Eq. (6):

ˆ,

1

ˆ# ,

ˆ# ,

j
i i

j

j i i

Cx x
j

j i i

j

x x

x x

p

p

p

(6)

The simplest setting for the initial counts is to set them all to unity [12]. Doing so sets all of the

class conditional probability distributions to uniform before any training points are added to the

classifier. This approach generally makes sense unless there is reason to believe, possibly

through prior experimentation, that some variable values have higher likelihood than others

given the class label.

2.3 Using a Bayesian Classifier to Perform Black-Box Optimization

In this section, the single-objective version of CGS is described. The extension to multi-

objective optimization is detailed in Section 2.4. CGS uses a Bayesian classifier to achieve

efficient design space exploration and optimization in two ways. First, new candidate points are

generated by sampling the class conditional probability distributions that comprise the classifier.

By sampling the distributions that are trained with high-performance solutions, new points are

generated that are likely to be similar to those that are already known to be good and that may

improve the objective function. Second, the updated classifier is then used to screen each new

candidate solution based on the posterior probability of the design’s class prior to expensive

evaluation. With each new point that is evaluated, assigned a class label, and added to the

classifier training set, the classifier improves its ability to generate high-performance solutions

and filter out low-performance ones.

2.3.1 Main Loop of the Algorithm

Figure 3 depicts the CGS main loop. Initially, (Step 0) the class-conditional probability

distributions are instantiated as uniform discrete distributions. In Step 1, the class conditional

probabilities of the high-performance class are sampled to generate a candidate solution. In Step

2, the candidate’s posterior probability of being ‘good’ is computed by the classifier. In Step 3,

the candidate solution is accepted or rejected for evaluation based on two criteria. First, the

solution is checked against all previously evaluated solutions to avoid repeat evaluations of the

same solution. Second, if the candidate solution's posterior probability of being ‘good’ is below

a threshold, it is rejected. The threshold value is determined for each candidate solution by

13

sampling from a uniform distribution ranging from zero to one. If the candidate solution is

accepted, the new design point is added to the set of new designs to be evaluated with the

expensive simulation in Step 4. Otherwise, the method returns to Step 1 to generate a new point.

Steps 1-3 are repeated until Nbatch new designs are generated and accepted for evaluation, where

Nbatch is a user-defined parameter that can be any positive integer and represents the number of

new designs to evaluate at each iteration.

1. Sample the Probability
Distribution of “Good” Solutions

4. Expensive Evaluation

5. Update the Classifier

6. Converged?
No

3. Accept?

2. Determine Probability of
Being “Good”

No

0. Begin

7. End

Yes

Yes

Figure 3: Classifier-guided sampling algorithm

In Step 5, the classifier is updated according to two separate processes. First, the newly

evaluated designs must be assigned class labels and added to the classifier training dataset. Note

that some of the previous training points may require class label reassignment (i.e., a ‘good’

point is now ‘bad’ due to an overall improvement in the set of the best designs). Second, the

structure of the classifier’s Bayesian network may be reconstructed from the current set of

classifier training points using a learning algorithm. These two processes are described in detail

in subsequent sections.

The main loop repeats if a convergence or stopping criterion does not end the cycle (Step 6).

Stopping criteria can include reaching a user-defined upper limit on the evaluation count,

iteration count, or wall-clock time. Any common convergence criteria may also be used, such as

14

achieving a desired objective function value, or failing to improve the best design by some

percentage after a constant quantity of most recent evaluations.

2.3.2 Assigning Class Labels

Class labels are assigned to newly evaluated designs according to how desirable they are relative

to all those that have been evaluated thus far. At a minimum, two classes are required, but more

may be used if desired. In the work presented here, each evaluated design is given a class label

of either ‘good’ or ‘bad’. Without loss of generality, we assume in this discussion that we seek

to minimize the objective function.

Class labels are determined by assigning the top Nbest evaluated solutions a label of ‘good’ and

all others a label of ‘bad’, where Nbest is a user-defined constant. In other words, the newly

evaluated designs are added to the previous set of Nbest best designs, the set is sorted by

ascending objective function value, and the top Nbest designs are assigned the ‘good’ label and all

other are assigned the ‘bad’ label. All new designs are then added to the training set with their

assigned class labels. Designs that were in the previous iteration’s set of Nbest best designs will

either remain as they were (if they are still member of the ‘good’ class) or their class label will

be reassigned from ‘good’ to ‘bad’ (they are no longer in the set of Nbest best designs).

For constrained optimization problems, a method is needed to rank and sort a set of designs that

has a mix of feasible and infeasible solutions. One approach to constraint handling is to use a

penalty function that increases the effective value of the objective function. However, this

approach distorts the objective function and requires additional user-defined parameters.

Therefore, in this work, we implement the method proposed in [13]. Using this technique,

feasible solutions are always preferred to infeasible ones. When comparing two infeasible

solutions, the one that violates the constraints by a lesser overall amount is preferred. That is, for

each constraint, the amount of the violation is scaled by dividing it by the average violation for

that constraint of all designs evaluated thus far and then multiplied by 100. The overall violation

is then computed by summing all scaled violations. This procedure prevents CGS from unfairly

focusing on constraints that tend to have higher raw violation values. As before, when

comparing two feasible solutions, the one with the lower objective function value is preferred.

2.3.3 Learning the Bayesian Network Structure

The ability for CGS to explicitly capture interactions between variables offers a significant

advantage over GAs. In practice, expert knowledge of both BN theory and of the problem being

solved is required for manual construction of the BN. Therefore, one of the major goals of this

LDRD was to implement a BN learning algorithm that updates the structure of the BN with each

passing iteration of the CGS main loop.

In general, learning the structure of a BN given a data set is NP-hard [14]. Therefore, it is not

possible to construct the BN with an algorithm that is both fast and correct. In this context, a fast

learning algorithm is critical, because CGS requires the BN to be learned repeatedly during a

single optimization run. The K2 algorithm [15], a greedy probabilistic network building

heuristic, is selected due to its speed and its strong theoretical basis. K2 seeks to maximize an

overall network score, which is given by Eq. (7):

15

1

,
D

S i

i

P B g i

 (7)

where D is the number of design variables, BS is the candidate BN structure, and g(i,i) is the

node score (given in Eq. (8)).

1 1

1 !
, log log !

1 !

i iq r
i

i ijk

j kij i

r
g i N

N r

 (8)

A thorough discussion of the theory behind Eq. (8) is provided by [15]. Table 1 provides

descriptions of the terms in the node score calculation

Table 1. Description of symbols in the K2 node score equation

i The parent variables of the variable xi, where (1 ≤ i ≤ D)

qi The number of possible configurations of i

ri The cardinality (domain size) of variable xi

Nij The number of instances in the dataset where the variables in i take their j
th

configuration, where (1 ≤ j ≤ qi)

Nijk The number of instances in the dataset where the variable xi takes its k
th

 value and the

variables in i take their j
th

 configuration, where (1 ≤ k ≤ ri)

The K2 algorithm requires two parameters as user inputs: an upper limit on the number of

parents each node may have, and a sequence order in which to process the nodes. K2 visits each

node in the network according to the provided search order to drive the network structure

towards an approximately maximal scoring configuration. When a node is visited, it is assumed

that it initially has no parents; parents are added if doing so can increase the node score.

Candidate parents for that node are restricted to its predecessors in the search order. The

predecessor node that increases the node score by the greatest amount is added as a parent until

the upper limit on parents is reached or until no additional candidate parents exist that would

increase the node score. Note that the most complex networks are not necessarily preferred, as

edges are only added if doing so increases the overall score of the network.

In the CGS main loop, automatic learning of the classifier BN can be optionally performed in

Step 5 (Figure 3). Whether or not network learning occurs depends on the user-defined

parameter PL, which is the upper limit on the number of parents a node may have in the BN (not

including the class variable node, which is always a parent to all variables). If PL is set to zero,

no learning will occur. If it is set to any positive value between 1 and D-1, network learning is

performed. When automatic learning is enabled, CGS uses the set of Nbest designs as the dataset

to learn the BN. Only the set of Nbest are used because, of all previously evaluated designs, the

best ones are most likely to respect any variable interactions that may exist. The K2 search order

changes on each iteration, and is given as a random permutation of the design variables.

After K2 learns a new network on the current iteration, the network score for the previous

iteration’s network is computed using the latest dataset. The network structure is updated only if

16

the new structure has a higher network score than the previous network. Finally, if the network’s

structure changes, the classifier is retrained with all current design vector / class label pairs.

2.4 Multi-Objective Classifier-Guided Sampling

CGS has thus far been described in the context of single-objective optimization. That is, the goal

of the optimization has been to minimize (or maximize) a single performance metric subject to

zero or more constraints. In practice, however, it is often necessary to optimize more than one

competing objective simultaneously for the purpose of identifying and understanding the impact

of decisions on performance tradeoffs. The goal of multi-objective optimization is to identify the

set of non-dominated designs, i.e., those for which there are no known designs outside of this set

that are better in at least one objective and not worse in any others.

Multi-objective CGS (MOCGS) proceeds almost identically to the single-objective version with

the main difference being the manner in which class labels are assigned after each new batch of

solution evaluations. Recall from Section 2.3.2 that class labels are assigned by sorting a set of

designs with known objective function values and assigning the class label of ‘good’ to the top

Nbest designs. The size of this set is equal to the sum of Nbest and Nbatch and is sorted according to

the value of the single objective function (and feasibility if constraints are present). When

multiple-objectives are present, an alternate sorting scheme is needed. To perform this task,

MOCGS uses the same sorting procedure that is implemented by NSGA-II (non-dominated

sorting genetic algorithm) [16], which is a multi-objective genetic algorithm that is popular for

its speed and simplicity.

NSGA-II sorts solutions first by increasing domination rank and next by decreasing crowding

distance. To determine the domination rank (Figure 4), the set of solutions that are non-

dominated are assigned a ranking of 1. The solutions that would be non-dominated after

removing all of the solutions of rank 1 are assigned a ranking of 2. This process continues until

there are no more rankings to assign. The crowding distance is a measure of the density of other

solutions of a given rank that surround a particular solution. Solutions that are crowded by fewer

other solutions are preferred in order to promote diversity in the population. The crowding

distance of a particular solution is determined by adding the distances of the two designs on

either side of it along each of the objectives. The extreme solutions of a particular domination

rank are always given a crowding distance of infinity to maintain the broadest spread of the non-

dominated front. For a detailed explanation and pseudocode of the NSGA-II algorithm for

determining domination ranks and crowding distances, refer to [16].

MOCGS handles constraints using the same approach as the single-objective version. Feasible

solutions are always preferred to infeasible ones. When comparing two infeasible solutions, the

one that violates the constraint by a lesser overall amount is preferred (regardless of domination

rank and crowding distance).

17

Figure 4: Domination raking for a two-objective minimization problem [17]

Figure 5 illustrates how CGS uses the NSGA-II sorting procedure to assign class labels after

each new batch of new designs is evaluated. First, the new Nbatch new designs are combined with

the current set of Nbest ‘good’ designs to form one unsorted set. Next, the set is sorted by

increasing domination ranking. If a domination rank exists whose designs can only be partially

accommodated into the top Nbest designs (rank 2 in Figure 5), members of that rank are sorted by

decreasing crowding distance. Finally, the top Nbest designs in the set are assigned to the ‘good’

class, and all others are assigned to the ‘bad’ class, and the classifier is updated appropriately.

Sort by
domination

rank

Current iteration’s

Nbest ‘good’ designs

Sort non-
accommodated

rank by crowding
distance

Domination rank = 1

Domination rank = 2

Domination rank = 3

Assign top Nbest

to ‘good’ class

Assign rest to
‘bad’ class

Current iteration’s

Nbatch new designs

Next iteration’s

Nbest ‘good’ designs

Figure 5: NSGA-II non-dominated crowding sorting procedure applied to MOCGS

The final output of a MOCGS run should be the set of all non-dominated solutions that the

optimization was able to discover. However, it is likely that the quantity of these solutions will

exceed the constant Nbest, and returning the set of Nbest ‘good’ designs would not provide the

complete desired output. Therefore, MOCGS maintains an external set of solutions that contains

the set of all non-dominated designs that have been identified. It is updated after each iteration,

and it does not participate in or influence the optimization in any way. When MOCGS

terminates it will contain all non-dominated designs that the optimizer was able to identify. If no

18

feasible solutions were discovered, it will contain all non-dominated infeasible designs without

regard to the extent of constraint violation.

19

3 COMPARISON TO GENETIC ALGORITHMS

In this section, the performances of single- and multi-objective CGS are compared to single- and

multi-objective GAs. The GA implementation used in these tests is the JEGA solver available in

the DAKOTA toolkit [18]. For the single-objective comparison, six constrained and

unconstrained single-objective problems are used. For the multi-objective experiments, one of

the constrained single-objective problems (50-item knapsack problem) is reformulated as a

multi-objective problem where the weight capacity constraint is treated as an objective rather

than a constraint. The test problems are described next.

3.1 Test Problems

3.1.1 30-Variable Deceptive Function of Order 3

The deceptive function of order 3 [5] is a maximization problem with strong dependencies

among the decision variables, and is formulated as

 3

0.9 if 0

0.8 if 1

0 if 2

1 otherwise

deceptive

u

u
f X

u

 (9)

where X is a vector of three binary variables, and u is the sum of the input variables. Eq. (9) can

be summed over an arbitrary number of variables to scale the problem to larger sizes. In the

experiments that follow, a 30-variable objective function is generated by summing Eq. (9) a total

of ten times, as shown in Eq. (10):

/3 1

3

30

0

n

deceptive deceptive i

i

f X f S

 (10)

where X = (X0,…, Xn-1) is a vector of variables, Si = (X3i, X3i + 1, X3i + 2), and n = 30. Due to the

strong coupling of the input variables, this function is ideal for demonstrating the effectiveness

of using a BN-based optimization technique such as CGS when compared to GAs.

3.1.2 50-Item 0-1 Knapsack Problem

The objective of the 0-1 knapsack problem is to select a subset of available items that each have

a constant weight and value such that the total value, V, of the selected items is maximized

without exceeding a predetermined upper limit on the combined weight, W. For the experiments

performed here, there are 50 different items to choose from, and only one or zero of each item

may be included. Denoting a vector of binary variables x = (x1, x1, … , x50) to represent a

solution to the problem, the problem is formulated as follows [1]:

20

1

1

Maximize

Subject to , 0,1

n

i i

i

n

i i i

i

V v x

w x W x

x

 (11)

where vi and wi are the value and weight of item i, respectively. W is chosen to be 50% of the

total weight of all available items. The weights and values used for this problem are provided in

Appendix A.

For the multi-objective experiments, this problem is reformulated to a 2-objective problem by

treating the total weight as an objective that is sought to be minimized.

3.1.3 System Design Problem

The goal of this problem is to identify the best selection of subsystems that combine in a modular

fashion to form a complete system. Each subsystem has two or more technology options to

choose from, and each technology option has an associated cost and utility associated with it.

Only one technology option from each subsystem may be chosen. In addition, technology

options from one subsystem may necessitate or obviate technology options from another

subsystem. In the single-objective version of this problem, the goal is to maximize the total

utility U of all subsystems without exceeding a fixed upper limit on total system cost C while

respecting all necessitation and obviation constraints.

For the experiments performed here, the overall system is to be comprised of 15 subsystems,

each with varying numbers of available technology options to choose from. In addition, there

are 25 necessitation constraints and 15 obviations constraints that cannot be violated. The

utilities and costs of each technology option as well as the necessitation and obviation constraints

are detailed in Appendix A.

3.1.4 30-City Traveling Salesman Problem

The traveling salesmen problem (TSP) is a frequently studies combinatorial optimization

problem. Given a set of cities and their Cartesian coordinates, the goal is to find the shortest

possible tour that visits each city exactly once and returns to the city of origin. The distance

between two cities is assumed to be the same regardless of direction traveled.

A candidate solution to this problem is encoded as a binary string of length n∙m, where n is the

number of cities in the tour and m = log2n (rounded up) [7]. Each city is represented by a

contiguous substring of length m witch are decoded into integers that represent positions in the

tour. Ties are resolved by assuming that the city whose substring appears first in the bit string is

the city that is visited first. This encoding/decoding strategy ensures that all possible binary

strings of length n∙log2n bits can be decoded into valid TSP solutions (i.e., each city is visited

exactly once). For the experiments performed here, the 30 city locations are obtained from [19]

and are tabulated in Appendix A.

21

3.1.5 Warehouse Location Problem

In the warehouse location problem (WLP), a set of stores exist which each must be supplied by

exactly one warehouse. Warehouses, each of which may supply one or more stores, may be

opened in a variety of locations. There is a fixed cost associated with opening a warehouse, and

the cost to supply a store depends on which warehouse is supplying it. Furthermore, each

warehouse has a maximum capacity that specifies how many stores it can supply. The goal of

the WLP is to decide which warehouses to open and which stores they should supply such that

the total warehouse opening and store supply costs are minimized.

In the experiments performed here, a candidate solution is represented by a vector x = [x1, x2, … ,

xn], where n is the number of stores. Each xi represents a store and its value can be any integer

between 1 and m, where m is the number of warehouses. The problem specific parameters are

taken from the example in the CPLEX OPL user manual [20]. There are ten stores and five

warehouses. The fixed cost of opening each warehouse is 30. The warehouse capacities and

store supply costs are tabulated in Appendix A.

3.1.6 Welded Beam Design Problem

The welded beam problem [21, 22] is a popular engineering design optimization problem in

which the goal is to minimize the cost of welding a metal cantilever beam. A rectangular bar is

to be welded at one end to a wall and it will support a point load at the opposite end (Figure 6).

The objective is to select the weld style, beam/weld material, and geometric properties that

minimize the total material cost without violating any of four constraints.

Figure 6: Welded beam problem [22]

The weld style describes whether two (x1 = 0) or four (x1 = 1) of the contact edges between the

beam and wall are to be welded. The weld filler metal and beam material will be of the same

type, and the options are steel, cast iron, brass, and aluminum (x2 = 1, 2, 3, or 4, respectively).

The geometric parameters are the thickness of the weld (x3 = h), the width of the beam (x4 = t),

the thickness of the beam (x5 = b), and the length of the welded portion of the beam (x6 = l). The

geometric parameters are restricted to discrete values, as shown in Table 2.

22

Table 2. Welded beam design problem geometric parameters
Variable Minimum (inches) Maximum (inches) Step size (inches)

x3 0.0625 0.5000 0.0625

x4 7.500 10.000 0.125

x5 0.0625 1.0000 0.0625

x6 0.125 3.000 0.125

Representing the six design variables by a vector x, the objective function and constraints are

computed by Eq. (12):

2

1 3 6 1 4 2 4 5 6

1

2

3 max

4

Minimize 1

0

0
Subject to

0

0.577 0

c

f c x x x x c x x L x

g S

g P F

g

g S

x

x x

x x

x x

x x

 (12)

Where c1 and c2 are material costs, and g1, g2, g3, and g4 are constraints on the bending stress

(x), buckling load Pc(x), beam deflection (x), and weld shear stress (x), respectively. The

design stress, S, is dependent on the material choice. The force, F, of the point load at the end of

the beam is 6000 lb, the extended length (portion of beam not welded to the wall) L is 14 inches,

and the maximum allowable deflection, max, is 0.25in. The material costs, properties, and

formulas for calculating Pc(x), (x), and (x) are available in [23].

3.2 Single-Objective Performance Comparison Results

The single-objective optimization performance between CGS and GAs is assessed using rate of

convergence tests in which, during an optimization run, the current single best solution is

recorded after each evaluation of the objective function. Plotting the best known objective

function vs. the number of function evaluations then provides a visual and analytical indicator of

how quickly each method converges towards optimal solutions. Both CGS and GA perform

differently across multiple runs due to their reliance on random number generation. Therefore,

each optimization problem is solved 50 times using both optimization techniques, and the

average results are plotted. In addition, vertical bars are added at select points to indicate the

standard deviation of the best known objective function found across the 50 tests. Repeat

evaluations of previously-evaluated designs are precluded for both methods.

In all tests, the GA used a two-point crossover operator. The mutation operator used randomly

selects a design variable, converts it to a binary representation, randomly selects a bit from that

string, and toggles it. The selector used always favors feasible solutions to infeasible ones, and

less infeasible solutions to more infeasible ones. Documentation of these operators is provided

in the DAKOTA reference manual [18].

There are several user-defined parameters that must be specified for both optimization

techniques. For CGS, they include Nbest, Nbatch, and PL (or a constant user-specified BN if

automatic network learning is not enabled). For GA, the user-defined parameters include the

23

population size, crossover rate, and mutation rate. To get the best possible performance of both

CGS and GA, their respective parameters were tuned in a set of preliminary optimization runs.

In Sections 3.2.1-3.2.6, the user-defined parameters that are used by both CGS and GA are

tabulated and the rate of convergence curves are plotted. The results of all test problems are

discussed together in Section 3.2.7.

3.2.1 30-Variable Deceptive Function of Order 3

For this problem, automatic network learning was not enabled for CGS. Instead, the rate of

convergence experiments were run with two fixed, manually set BNs. In one case, a naïve Bayes

classifier (i.e., all variables are independent of each other) is used. In the second case, a priori

knowledge of the underlying problem structure is used to construct the BN. Recall from Eq. (9)

and (10) that the overall objective function is a sum of sub-functions whose values depend on

non-overlapping sets of three consecutive variables. The variables in each set of are not

independent of each other. Therefore, the BN used model x1 as a parent of x2 and x3, and x2 as a

parent of x3, with this pattern continuing for every set of three consecutive variables (Figure 7).

As always, the class variable c is a parent of all design variables.

c

x1 x2 x3 x4 x5 x6

Figure 7: Manual BN used for the CGS solution of the order 3 deceptive

The other user-defined CGS and GA parameters that were used for the 30-variable deceptive

function are shown in Table 3, and the results of the rate of convergence tests are shown in

Figure 8.

Table 3. User-defined parameters for the deceptive function of order 3

CGS Parameters GA Parameters

Nbest 20 Population Size 50

Nbatch 20 Crossover Rate 0.8

PL n/a (fixed BN) Mutation Rate 0.01

3.2.2 50-Item 0-1 Knapsack Problem

For this problem, automatic network learning was disabled for CGS, and a fixed naïve Bayes

classifier was used. The other parameters used for both optimization methods are shown in

Table 4, and the results of the rate of convergence tests are shown in Figure 9.

24

Table 4. User-defined parameters for the 50-item 0-1 knapsack problem

CGS Parameters GA Parameters

Nbest 20 Population Size 50

Nbatch 20 Crossover Rate 0.8

PL n/a (naïve Bayes) Mutation Rate 0.01

3.2.3 System Design Problem

The user-defined optimization parameters for the system design problem are shown in Table 5,

and the results of the rate of convergence experiments are shown in Figure 10.

Table 5. User-defined parameters for the system design problem

CGS Parameters GA Parameters

Nbest 50 Population Size 100

Nbatch 50 Crossover Rate 0.8

PL 2 Mutation Rate 0.01

3.2.4 30-City Traveling Salesman Problem

The user-defined optimization parameters for the 30-city TSP are shown in Table 6, and the

results of the rate of convergence experiments are shown in Figure 11.

Table 6. User-defined parameters for the 30-city TSP

CGS Parameters GA Parameters

Nbest 50 Population Size 100

Nbatch 50 Crossover Rate 0.8

PL 2 Mutation Rate 0.01

3.2.5 Warehouse Location Problem

The user-defined optimization parameters for the warehouse location problem are shown in

Table 7, and the results of the rate of convergence experiments are shown in Figure 12.

Table 7. User-defined parameters for the warehouse location problem

CGS Parameters GA Parameters

Nbest 20 Population Size 50

Nbatch 20 Crossover Rate 0.8

PL 1 Mutation Rate 0.01

3.2.6 Welded Beam Design Problem

The user-defined optimization parameters for the welded beam problem are shown in Table 8,

and the results of the rate of convergence experiments are shown in Figure 13.

25

Table 8. User-defined parameters for the welded beam design problem

CGS Parameters GA Parameters

Nbest 50 Population Size 100

Nbatch 50 Crossover Rate 0.8

PL 2 Mutation Rate 0.01

Figure 8: Deceptive function results

Figure 9: 50-Item knapsack results

26

Figure 10: System design problem results

Figure 11: 30-city traveling salesman problem results

27

Figure 12: Warehouse location problem results

Figure 13: Welded beam problem results

3.2.7 Single-Objective Optimization Results Discussion

The results of the rate of convergence tests for the 30-variable deceptive function are shown in

Figure 8. Initially, both instances of CGS outperform GA, but GA is able to find better solutions

than the naïve Bayes implementation of CGS after roughly 700 function evaluations. However,

when the manual BN of Figure 7 is used to capture the variable dependencies for CGS, the

performance is significantly better than that of GA. On average, CGS with a well-constructed

BN converges to the known global optimal solution (f = 10) quickly and consistently (all

28

converged in less than 1300 evaluations). While it is difficult to tie this particular test problem to

a real-world example, it effectively demonstrates the potential of CGS to solve difficult

optimization problems provided that it is given a BN that accurately captures the dependencies

amongst the design variables (or that it is able to discover those dependencies on its own).

The results of the rate of convergence tests for the 50-item knapsack problem are shown in

Figure 9. For this problem, even though a fixed naïve Bayes classifier was used, CGS

outperformed GA consistently at all stages of the optimization runs on average. These results

demonstrate that it is not always necessary to force CGS to capture variable interactions to

ensure good performance. That is, if the dependencies among variables are weak or non-

existent, CGS may perform well on average relative to GA.

For the other test problems, which used the K2 algorithm for automatically learning the BN

structure at each iteration, a common trend exists. In general, CGS converges towards the global

optimum more quickly early in the solution process and remains ahead of GA up until

termination. Near the upper limits on function evaluations, when both methods have effectively

leveled off, CGS finds a better objective function value and has tighter standard deviation bars

than GA, indicating better and more consistent performance even when both methods are given a

large budget of function evaluations. The one exception to this trend occurs with the 30-city

TSP (Figure 11). For this problem, GA initially improves towards the optimal design

significantly faster than CGS. However, after approximately 13,000 function evaluations, CGS

overcomes GA and identifies superior solutions, on average, given a larger allowance of function

evaluations. It should be noted that neither of the two optimization techniques is particularly

effective at solving this problem as it is formulated here. The vertical standard deviation bars for

both methods are quite large, even near 25,000 evaluations, indicating inconsistent performance

and low confidence that the global optimum is ever identified.

3.3 Multi-Objective Performance Comparison Results

Recall from Section 2.4 that the goal of multi-objective optimization is identify a set of non-

dominated solutions, i.e. those for which there are no known designs outside of this set that are

better in at least one objective and not worse in any others. With single-objective optimization,

the best known objective function value provided a convenient way to plot a scalar, runtime

performance metric vs. the number of function evaluations. Accessing or computing such a

metric is less straightforward with multi-objective analysis. Some approaches include measuring

the spread of the Pareto set (i.e., distance between extreme points), computing the hyper-volume

under the Pareto set relative to an arbitrary reference point, or (when comparing two Pareto sets)

computing the percentage of each Pareto set that is not dominated by the other. However, no

single metric can capture all Pareto performance attributes that may be of interest [24].

Therefore, in this work, we simply plot the progress of the MOCGS and GA algorithms at

specified intervals. Furthermore, due to the difficulty of specifying an “average” Pareto set

across multiple runs, results of only a single optimization run for both MOCGS and GA are

presented.

29

3.3.1 2D 50-Item Knapsack Problem

The 2D multi-objective version of the 50-item knapsack problem is similar to the single-

objective version. The only difference is that the constraint on the maximum weight of all

selected items is now an objective that is sought to be minimized. As before, the total value of

all selected items is to be maximized.

The algorithmic details of MOCGS are provided in Section 2.4. For the GA, the fitness of an

individual solution is based on the number of designs in the population that dominate that design

in the multi-objective space, with a lower domination count being better. The same mutation and

crossover operators from the single-objective experiments were used (random bit mutation and

two-point binary crossover, respectively). A selector is used that selects designs that have fitness

that is below a certain limit. In this case, the chosen limit is a domination count of 3. Note that

this allows the population size to grow beyond the user-specified initial population size.

Documentation of these operators is provided in the DAKOTA reference manual [18].

The user-defined MOCGS and GA parameters for the 2D 50-item knapsack problem are shown

in Table 9. Both methods are set to terminate after performing 5,000 function evaluations.

Table 9. User-defined parameters for the multi-objective 50-item knapsack problem

CGS Parameters GA Parameters

Nbest 20 Population Size 50

Nbatch 20 Crossover Rate 0.8

PL 2 Mutation Rate 0.1

Results of the MOCGS and GA optimization runs are presented in Figure 14. Each plot (a-f) in

the figure represents a snapshot of the current state of the optimization after specified number of

function evaluations. While MOCGS evaluates exactly Nbatch new designs with each iteration,

the number of evaluations per iteration varies in this particular GA implementation. Therefore,

the numbers of function evaluations for each method don’t necessarily match in each snapshot.

In all plots, the number of GA evaluations is greater than or equal to the number of MOCGS

evaluations at the completion of that iteration.

3.3.2 Multi-Objective Results Discussion

The objective of the 2D 50-item knapsack problem is to simultaneously minimize the total

weight and maximize the total value of the selected items. Therefore, the goodness of the Pareto

sets in Figure 14 can be assessed by identifying the ones that progress upwards and to the left of

the plot area the fastest. When neither set appears to dominate the other, the set with a larger

spread (distance between end points) and a larger quantity of non-dominated designs is best.

By viewing the plots in order of increasing function evaluations, it’s clear for this particular

optimization problem that MOCGS outperforms the GA. At the initial snapshot at

approximately 420 function evaluations (Figure 14a), the entire MOCGS set dominates that of

the GA. The MOCGS set remains dominant in every snapshot up to the final plot in Figure 14f.

In other words, not only is the final solution after (roughly) 5,000 evaluations better, but it would

be better even the optimizers were terminated early (which may be necessary in practice, for

30

example, if the objective function were computationally expensive to evaluate). In addition, the

spread of solutions is slightly better for MOCGS in the final plot. Lastly, MOCGS identifies 127

non-dominated solutions, while GA identifies only 104 non-dominated solutions.

The results of this experiment provide strong evidence that MOCGS has the ability to outperform

GA on some multi-objective problems. However, this isn’t sufficient evidence to conclude that

MOCGS is always or more often preferred. The results presented here are from one run with one

particular setting of GA parameters and operators. It is also difficult, based on this one study, to

make general conclusions about the kinds of problems for which one technique would be better.

Additional case studies and experiments would help to provide this type of guidance.

31

(a)

(b)

(c)

(d)

(e)

(f)

Figure 14: Multi-objective 50-Item knapsack problem Pareto progression

32

33

4 APPLICATION TO MICROGRID DESIGN

In October of 2012, Hurricane Sandy brought intense wind, rain, storm surges and claimed

hundreds of lives. In the U.S., it is estimated that Sandy damaged or destroyed 650,000 houses,

left 8.5 million customers without power, and caused 72 deaths [25]. It also left millions of

homes and businesses without electric power. The storm was particularly devastating to the city

of Hoboken, NJ, which was flooded for several days following the storm. The electric power

grid was unavailable during this time. A well-designed microgrid (MG) may have been able to

provide autonomous support to critical infrastructure during this outage. However, the decisions

about what distributed energy resources (DERs) to install, where to install them, and how they

should be interconnected have significant implications on cost and the ability to serve critical

loads during autonomous MG operation. In this section, this problem is formulated as a single-

and multi-objective optimization problem, and CGS is used to seek optimal MG configurations.

The single-objective optimization results were published in the proceedings of the 2015 ASME

Design Engineering Technical Conference [26] (SAND2015-0353C). This work is also an

extension of a previous study in which a thorough energy surety analysis was performed for the

City of Hoboken by Sandia National Laboratories [27].

4.1 Performance and Reliability Model Overview

For this work, the Performance and Reliability Model (PRM) was used to simulate grid outages

and assess the performance of candidate MG designs. The PRM is a simulation code written in

C++ at Sandia National Laboratories that is used to statistically quantify the performance and

reliability of an MG operating in autonomous (islanded) mode. The PRM allows the

performance of an MG to be quantified in terms of fuel usage, renewables penetration,

renewables spillage, and other operational characteristics.

The PRM simulation relies on a representation of an unreliable power utility, specifically

through the definition of failure and repair modes. In a typical PRM simulation, thousands of

utility outages are simulated to ensure that the calculated statistics are representative of average

behavior. The PRM models system behavior as a discrete sequence of events in time. At each

event, logic is executed which may result in the scheduling of more events. The simulation

proceeds until all events have been executed or until some stopping criterion is satisfied.

The primary input to the PRM is an MG topology specification. A topology specification

includes descriptions of components such as electrical lines, busses, switches, transformers,

generation assets and fuel sources, batteries, and inverters, in addition to the details of how these

components are interconnected. Most components in the PRM can be modeled as potentially

unreliable. To specify an unreliable component, failure modes must be defined where each mode

represents a specific type or mode of component failure. Each failure mode specifies a failure

time and a repair time statistical distribution that is sampled to generate the time characteristics

of the failures and repairs, respectively. In addition to the physical layout and reliability

characteristics of an MG, the PRM requires three configured controllers to define how the grid

operates during different phases. A controller implements and executes the logic applied during

the three phases of operation: grid-tied operation, MG startup operation, and autonomous MG

operation. For additional details about the controllers and how they function in the context of

PRM, refer to [26].

34

The primary outputs of the PRM are computed quantities and statistics, any of which can be used

as optimization objective functions. All unreliable entities gather statistics detailing the outages

they suffer, their durations, and the amount of downtime attributable to each failure mode. All

levels of the grid for which it makes sense to express load service statistics track load served and

not served. In the context of emergency autonomous operation, which is the focus of this work,

the impact of MG topology (generators, lines, busses, and how these components are

interconnected) on average load not served (LNS) is the quantity of interest, which is provided in

kW-h per hour of bulk grid outage.

4.2 Hoboken Microgrid Design Challenge

There are 55 buildings (Figure 15) in Hoboken that are designated as critical and should remain

operational during an emergency. The buildings include emergency services, pump stations (for

flood control), affordable and senior housing units, grocery stores, gas stations, and government

buildings. A complete listing of the buildings, their locations, and their estimated continuous

loads is given in [26, 27].

The problem addressed here is to design a microgrid that minimizes average LNS, in kWh per

hour of outage, of the 55 buildings without exceeding a limit on installation cost. There are two

types of design variables that define this problem. First, the sizes and locations of natural gas

generators are considered. Natural gas generators are chosen as the generator type because the

high-pressure natural gas pipeline that runs throughout Hoboken is assumed to remain

operational during an emergency, as it did during Hurricane Sandy. If installed, the generators

are to be co-located with the 55 critical buildings. Generator installation costs are based on their

size. The second type of design variable defines the topology of the microgrid. K-means

clustering was used to group the 55 generator sites into 13 sub-grids based on geographic

location. All buildings are assumed to be connected within each sub-grid, and each sub-grid can

only be connected to adjacent sub-grids. The cost to connect each sub-grid is based on the cost

per foot of underground cable. The building sub-grid assignments are tabulated in [26, 27].

In total, there are 153 design variables. Each variable is binary in the sense that the choice for it

is to either do nothing or install something (either a generator or MG connection). There are 131

generator installation design variables, and 22 MG connection design variables. All 153 design

variables and their installation costs are tabulated in [26]. Because of the emergency nature of

this problem, fuel cost is not considered because fuel use is a short-term need that will be a

relatively low cost in the long run.

LNS is evaluated by running a PRM simulation on candidate microgrid designs that are proposed

by the optimizer. Time-dependent hourly load data for each building is estimated based on

estimated peak loads. Utility outage frequencies and durations are sampled from probability

distributions such that they have an average duration of one week and occur on average every

100 years. The PRM is used to simulate grid-tied and autonomous operation continuously over a

period of 100,000 years. Therefore, the expected number of outages that are simulated with each

run is 1,000. The expected outage count was selected by increasing the total simulation time

until stable results were observed between runs of identical configurations.

35

Figure 15: Critical Hoboken buildings shown on a flood map [27]

36

4.3 Single-Objective Results

In this section, CGS is used to identify Hoboken MG configurations that reduce LNS and do not

violate the cost constraint. An upper limit on installation cost is set at $8M. GA was also used

to solve the optimization problem for comparison purposes.

For CGS, Nbest and Nbatch are set to 50, and a fixed naïve Bayes classifier is used. To promote

broad search early in the solution process, the first 100 candidates are sampled randomly from

uniform distributions. After these initial 100 samples, the classifier is used to guide the search

for the remainder of the optimization. For the GA, the population size is 50, and the crossover

and mutation rates are 0.8 and 0.1, respectively. Similar to the single-objective experiments

presented in 3.2, the GA used a two-point crossover operator, the random bit flipping mutation

operator, and the “favor feasible” selector.

Rate of convergence tests for both methods are executed five times each with a fixed upper limit

of 10,000 objective function evaluations, and the average result of the 5 trials is computed

(Figure 16). Repeat evaluations of previously assessed solutions are not performed and are

therefore not included in the rate of convergence results.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

100

200

300

400

500

600

Function Evaluations

A
v
e

ra
g

e
 L

o
a

d
 N

o
t
S

e
rv

e
d

 (
k
W

h
/h

)

Hoboken Microgrid Optimization

CGS

GA

Figure 16: Single-objective rate of convergence results

On average, CGS identifies a near-optimal solution with roughly 2,000 fewer objective function

evaluations than the GA. With the PRM configured as it is here, 2,000 evaluations equates to

roughly 12 hours of simulation time. While 12 hours may not seem significant, this time may

add up to many additional days of analysis time when analysis runs are being performed as part

of an iterative investigation. Neither method immediately identifies solutions that satisfy the cost

constraint in all five trials. Therefore, the curves in the figure begin at the lowest number of

evaluations needed for all five trials to identify feasible solutions. Beyond the first 5,000

function evaluations, the curves level off at almost identical levels of average LNS until the

algorithms were terminated at 10,000 evaluations. A discussion of the characteristics of the

overall best solution found is provided in [26].

37

4.4 Multi-Objective Results

For the multi-objective version of the Hoboken MG design problem, the constraint on cost is

treated as an additional objective to be minimized. For CGS, preliminary trials found that the

algorithm performed best for this problem when Nbest and Nbatch are set to 50, and PL is set to 3.

Similarly, the GA performed well with an initial population size of 50, a crossover rate of 0.8,

and a mutation rate of 0.1. As with the multi-objective knapsack problem that was presented in

Section 3.3, the fitness of an individual solution is determined by its domination count, the

random bit mutation operator was used, and the two-point binary crossover operator was used.

Lastly, the “below limit” selector was used in which designs that have a domination count below

3 are chosen. Both methods are terminated after 60,000 function evaluations.

Results of the MOCGS and GA optimization runs are presented in Figure 17. Each plot (a-f) in

the figure represents a snapshot of the current state of the optimization after a specified number

of function evaluations. In all plots, the number of GA evaluations is greater than or equal to the

number of MOCGS evaluations at the completion of that iteration.

In contrast to the 2D knapsack problem, CGS did not outperform GA by all measures. Early in

the solution process (Figure 17a-b) the GA’s non-dominated set appears to dominate some of the

designs in CGS’s non-dominated set; it also has broader spread and higher quantity of solutions.

In the final four Pareto snapshots (Figure 17c-f), CGS and GA hold with similar-looking non-

dominated sets. Upon close inspection of the final snapshot (Figure 17f), the GA set is slightly

better. First, there are several CGS solutions in the “knee” of the curve that are dominated by

designs in the GA set. Second, the spread of GA solutions in the objective space is greater

overall. Lastly, GA finds a larger quantity of non-dominated designs (210 vs. 147 for CGS).

While the GA results are better in this one case, the difference is very slight. Given the small

number of trials presented here, and the randomness that is inherent to the PRM simulations and

in both optimization techniques, there is insufficient evidence to make general conclusions about

which technique is better, on average, for this particular problem.

38

(a)

(b)

(c)

(d)

(e)

(f)

Figure 17: Multi-objective microgrid design problem Pareto progression

39

5 CONCLUSIONS AND FUTURE WORK

The overall goal of this LDRD project was to advance the state of the art of the CGS

optimization algorithm to a level at which it offers a competitive alternative to GAs for solving

large, non-linear, discrete-variable, black-box, single- and multi-objective optimization

problems. The project was successful in that algorithmic improvements and the software

implementation that resulted can significantly reduce the time required to solve such problems,

especially if the objective function is computationally expensive to evaluate. Three major tasks

were completed to achieve the goals of this effort:

 Scalability to large problems – Previously, CGS required that all discrete solutions in

the design space be enumerated and processed individually by the classifier at each

iteration of the algorithm. This issue was addressed by directly sampling the distributions

that comprise the classifier to generate new exploratory designs. The idea was first

published by Shahan et al. [2], and it was slightly modified and implemented as part of

this LDRD.

 Automatic learning of variable interactions – A significant benefit of CGS over some

other optimization techniques is that it requires no assumptions be made about the

functional form of the problem constraint(s) or objective function(s) to be optimized.

However, the results of the deceptive function of order 3 (Section 3.2.1) demonstrated

that capturing variable interactions with the classifier’s BN significantly improves

optimization performance. In general, it is difficult or impossible to construct the BN

manually when little is known about the objective function. Therefore, the K2 algorithm

[15], an automatic BN learning algorithm, was implemented as part of this LDRD that

learns these interactions on the fly and updates the classifier accordingly.

 Extension to multi-objective optimization – Prior to this work, CGS had only been

developed for optimization problems with one objective. Many real world problems have

multiple, competing objectives that must be traded off against each other. Furthermore,

many constrained single-objective problems may yield more insightful results if they are

formulated as unconstrained multi-objective problems. Therefore, this LDRD extended

the ability of CGS to include multi-objective optimization by assigning class labels to the

best solutions according the NSGA-II [16] sorting algorithm.

The latest CGS algorithm, complete with the advancements listed above, was implemented into a

portable C++ library that can be easily integrated with existing internal modeling and

optimization software tools or as a stand-alone solver that interfaces with an objective function

evaluator. Furthermore, the implementation of the BN classifier that resulted from this work can

be used for machine learning and classification tasks outside of the context of optimization.

Several avenues for future work have been identified. First, CGS should be integrated into

existing Sandia optimization tools such as Technology Management Optimization (TMO),

Whole System Trades Analysis Tool (WSTAT), and Microgrid Design Tool (MDT) as an

optional alternative to GA. Second, learning the BN on the fly has significant implication on the

performance of CGS. Additional work is needed to investigate how well the K2 algorithm is

working and whether other network learning algorithms would perform better. Third, unlike the

JEGA solver, MOCGS only has one option for determining the “goodness” of a design in

relation to a set of others in multi-objective space. Implementing additional class-label

40

assignment strategies (e.g., based on domination count) may improve MOCGS’s ability to solve

multi-objective optimization problems. Fourth, it would be interesting to investigate how and

whether CGS and GA could work together as a hybrid optimization technique, in which the

classifier could serve as an additional operator for generating and screening new candidate

solutions with each new GA population. Lastly, a methodology for determining the types of

problems for which CGS is best would be hugely valuable. At present, without explicit

knowledge of the underlying objective function(s), it is very difficult to know in advance which

technique will perform best.

41

6 REFERENCES

[1] P. B. Backlund, D. W. Shahan, and C. C. Seepersad, "Classifier-Guided Sampling for

Discrete Variable, Discontinuous Design Space Exploration: Convergence and

Computational Performance," Engineering Optimization, vol. 47, pp. 579-600, 2015.

[2] D. W. Shahan, P. B. Backlund, and C. C. Seepersad, "Classifier-Guided Sampling for

Discrete Variable, Discontinuous Design Space Exploration," presented at the ASME

International Design Engineering Technical Conferences (DETC), Portland, OR, 2013.

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed.

MA: Addison-Wesley, 1989.

[4] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence, 1st ed. Ann Arbor: University

of Michigan Press, 1975.

[5] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "Linkage Problem, Distribution Estimation,

and Bayesian Networks," Evolutionary Computation, vol. 8, pp. 311-340, 2000.

[6] M. Pelikan, D. E. Goldberg, and F. G. Lobo, "A Survey of Optimization by Building and

Using Probabilistic Models," Computational Optimization and Applications, vol. 21, pp. 5-

20, 2002.

[7] S. Baluja, "Population-Based Incremental Learning: A Method for Integrating Genetic

Search Based Function Optimization and Competitive Learning," Carnagie-Mellon

University, Dept. of Computer Science, Pittsburgh, PA CMU-CS-94-163, 1994.

[8] G. Harik, G. G. Lobo, and D. E. Goldberg, "The Compact Genetic Algorithm," IEEE

Transactions on Evolutionary Computation, vol. 3, pp. 287-297, 1999.

[9] J. S. De Bonet, C. L. Isbell, and P. Viola, "MIMIC: Finding Optima by Estimating

Probability Densities," Advances in Neural Information Processing Systems, pp. 424-430,

1997.

[10] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, "BOA: The Bayesian Optimization

Algorithm," presented at the Genetic and Evolutionary Computation Conference (GECCO-

99), Orlando, FL, 1999.

[11] H. Zhang, "The Optimality of Naive Bayes," presented at the Proceeding of the Seventeenth

International Florida Artificial Intelligence Research Society Conference, 2004.

[12] D. Barber, Bayesian Reasoning and Machine Learning: Cambridge University Press, 2012.

[13] K. Deb, "An efficient constraint handling method for genetic algorithms," Computer

Methods in Applied Mechanics and Engineering, vol. 186, pp. 311-338, 2000.

[14] D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian Networks: The

Combination of Knowledge and Statistical Data," Microsoft Research, Advanced

Technology Division, MSR-TR-94-09, 1995.

[15] G. F. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic

Networks from Data," Machine Learning, vol. 9, pp. 309-347, 1992.

42

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist Multiobjective

Genetic Algorith: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp.

182-197, 2002.

[17] M. Pelikan, K. Sastry, and D. E. Goldberg, "Multiobjective Estimation of Distribution

Algorithms," in Scalable Optimization via Probabilistic Modeling, 1
st
 ed., Berlin: Springer,

2006, pp. 223-248.

[18] B. M. Adams, M. S. Ebeida, M. S. Eldred, J. D. Jakeman, L. P. Swiler, J. A. Stephens, et al.,

"Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization,

Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.2

Reference Manual," Sandia National Laboratories, Albuquerque, NM, Sandia Report:

SAND2014-5015, 2014.

[19] L. D. Whitley, T. Starkweather, and D. Fuquay, "Scheduling Problems and the Traveling

Salesman: The Genetic Edge Recombination Operator," ICGA, vol. 89, 1989.

[20] IBM, "IBM ILOG CPLEX Optimization Studio OPL Language User's Manual," IBM, 2014.

[21] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering Optimization: Methods and

Applications, 1st ed., New York: John Wiley and Sons, 1983.

[22] K. Deb and M. Goyal, "Optimizing Engineering Designs Using a Combined Genetic

Search," in Proceedings of the Seventh International Conference on Genetic Algorithms,

1997.

[23] P. B. Backlund, "A Classifier-Guided Sampling Method for Early-Stage Design of

Shipboard Energy Systems," Ph.D. Dissertation, Mechanical Engineering Dep., University

of Texas at Austin, Austin, TX, 2012.

[24] T. Okabe, Y. Jin, and B. Sendhoff, "A Critical Survey of Performance Indices for Multi-

Objective Optimisation," presented at the Congress on Evolutionary Computation, 2003.

[25] E. S. Blake, T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven II, "Tropical

Cyclone Report: Hurricane Sandy," National Hurricane Center, 12 February, 2013.

[26] P. B. Backlund and J. P. Eddy, "Autonomous Microgrid Design Using Classifier-Guided

Sampling," presented at the ASME International Design Engineering Technical Conference

(DETC), Boson, MA, 2015.

[27] J. Stamp, M. Baca, J. Eddy, R. Guttromson, J. Henry, R. Jensen, et al., "City of Hoboken

Energy Surety Analysis: Preliminary Design Summary," Sandia National Laboratories,

Albuquerque, NM, Sandia Report: SAND2014-17842, 2014.

43

APPENDIX A: TEST PROBLEM PARAMETERS

Table A.1: 50-item knapsack problem parameters
Item ID Value Weight

1 3 94

2 41 70

3 22 90

4 30 97

5 45 54

6 99 31

7 75 82

8 76 97

9 79 1

10 77 58

11 41 96

12 98 96

13 31 87

14 28 53

15 58 62

16 32 89

17 99 68

18 48 58

19 20 81

20 3 83

21 81 67

22 17 41

23 3 50

24 62 58

25 39 61

26 76 45

27 94 64

28 75 55

29 44 12

30 63 87

31 35 32

32 11 53

33 21 25

34 45 59

35 43 23

36 46 77

37 26 22

38 2 18

39 53 64

40 37 85

41 32 14

42 78 23

43 74 76

44 61 81

45 61 49

46 51 47

47 11 88

48 85 19

49 90 74

50 40 31

44

Table A.2: System design problem technology option costs and utilities

Subsystem

ID

Number of

Tech. Options Metric

Technology Option ID

1 2 3 4 5 6 7 8

1 4
Cost 52 54 2 86 - - - -

Utility 19 65 10 30 - - - -

2 6
Cost 87 41 29 8 77 89 - -

Utility 84 15 27 50 36 73 - -

3 5
Cost 66 60 1 49 56 - - -

Utility 34 53 14 65 66 - - -

4 5
Cost 46 31 57 36 60 - - -

Utility 17 5 17 99 31 - - -

5 2
Cost 71 50 - - - - - -

Utility 50 26 - - - - - -

6 2
Cost 29 56 - - - - - -

Utility 7 28 - - - - - -

7 8
Cost 49 1 48 78 76 64 52 83

Utility 70 29 64 60 34 46 36 83

8 6
Cost 51 58 100 47 46 69 - -

Utility 52 25 56 55 52 11 - -

9 5
Cost 42 41 39 40 9 - - -

Utility 89 12 47 38 27 - - -

10 7
Cost 12 6 3 66 91 45 1 -

Utility 4 39 70 77 93 33 72 -

11 5
Cost 33 68 13 96 45 - - -

Utility 20 35 78 97 21 - - -

12 5
Cost 100 33 72 100 84 - - -

Utility 11 30 33 16 21 - - -

13 2
Cost 22 51 - - - - - -

Utility 11 58 - - - - - -

14 4
Cost 17 65 42 78 - - - -

Utility 92 5 4 10 - - - -

15 2
Cost 81 27 - - - - - -

Utility 97 27 - - - - - -

45

Table A.3: System design problem necessitations

Driving Technology Option Necessitated Technology Option

Subsystem ID Tech. Opt. ID Subsystem ID Tech. Opt. ID

3 5 5 2

7 1 10 2

7 2 10 6

7 3 10 2

7 5 10 5

7 7 10 2

7 8 10 5

8 2 11 3

8 4 11 3

8 5 11 3

8 6 11 5

8 1 13 1

8 2 13 1

8 3 13 1

8 4 13 1

8 5 13 1

9 1 12 3

9 2 12 3

9 3 12 3

9 4 12 3

9 5 12 5

9 1 13 1

9 2 13 1

9 3 13 1

9 4 13 1

46

Table A.4: System design problem obviations

Driving Technology Option Obviated Technology Option

Subsystem ID Tech. Opt. ID Subsystem ID Tech. Opt. ID

5 1 3 5

7 4 10 2

7 4 10 3

7 4 10 4

7 4 10 5

7 4 10 6

7 6 10 1

7 6 10 2

7 6 10 3

7 6 10 4

7 6 10 6

8 1 11 2

8 1 11 5

8 3 11 2

8 3 11 5

47

Table A.4: 30-city traveling salesman problem city coordinates [19]

City ID x-coordinate y-coordinate

1 54 67

2 54 62

3 37 84

4 41 94

5 2 99

6 7 64

7 25 62

8 22 60

9 18 54

10 4 50

11 13 40

12 18 40

13 24 42

14 25 38

15 44 35

16 41 26

17 45 21

18 58 35

19 62 32

20 82 7

21 91 38

22 83 46

23 71 44

24 64 60

25 68 58

26 83 69

27 87 76

28 74 78

29 71 71

30 58 69

Table A.5: Warehouse location problem warehouse capacities and warehouse-to-store

supply costs [20]

Warehouse Bonn Bordeaux London Paris Rome

Capacity 1 4 2 1 3

 Supply Costs

Store 1 20 24 11 25 30

Store 2 28 27 82 83 74

Store 3 74 97 71 96 70

Store 4 2 55 73 69 61

Store 5 46 96 59 83 4

Store 6 42 22 29 67 59

Store 7 1 5 73 59 56

Store 8 10 73 13 43 96

Store 9 93 35 63 85 46

Store 10 47 65 55 71 95

48

DISTRIBUTION

1 MS 1188 Backlund, Peter B. 06133

1 MS 1188 Eddy, John P. 06133

1 MS 1188 Thompson, Bruce M. 06133

1 MS 1188 Lawton, Craig R. 06133

1 MS 1188 Nanco, Alan 06114

1 MS 0899 Technical Library 09536 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office 01911

1 MS 0161 Legal Technology Transfer Center 11500

49

